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Foreword

These lecture notes are written for the introductory graduate course on ordinary differential equation,
taught initially in the Fall 2014 at North Dakota State University. They cover the classical theory in
both the initial and boundary value problems. The main goal is not to be encyclopedic, but present the
core of the theory with (sometimes excessive) all excruciating details. The problems are a significant
part of the notes and must be worked out to make sure that the material is digested well.
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Chapter 1

Introduction

1.1 Second Newton’s law, ordinary differential equations, and the
three-body problem

By the second Newton’s law the product of the mass1 of a body and its acceleration is equal to the
net force applied to this body:

ma = F ,

were m is a scalar, mass of the body, a(t) ∈ R3 is a vector with three components at each time
moment t, a : R −→ R3, and F (t,x,v) ∈ R3 is the net force, which may depend in general on
the time t, current displacement x(t) ∈ R3, or current velocity v(t) ∈ R3 of the body. Assume
for simplicity that the body under question has only one degree of freedom, which means that one
coordinate is enough to specify the body’s position. In this case the second Newton’s law looks
simpler:

ma = F,

where now a(t) and F (t, x(t), v(t)) are scalars at the fixed moment t. Since acceleration a is the rate
of change of velocity v, and velocity is the rate of change of displacement x, therefore

a =
dv

dt
, v =

dx

dt
,

and hence the physical law takes the form

m
d2x

dt2
= F,

or
mẍ = F, (1.1)

using the notation due to Isaac Newton himself:

ẍ :=
d2x

dt2
, ẋ :=

dx

dt
.

1I assume that the student saw the second Newton’s law before and has at least an intuitive understanding of the terms
“mass,” “body,” “force,” even if the rigorous definitions cannot be spelled out. If somehow you did not see the second
Newton’s law before, omit this motivational section and go straight to the next one, with axiomatic-style definitions.
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Equation (1.1) is a basic example of an ordinary differential equation, in which our goal is to find the
function t 7→ x(t) that has two continuous derivatives and satisfies the equation.

Example 1.1 (No force). Assume that F = 0, then ẍ = 0, and I can directly integrate twice with
respect to t to find the solution

x(t) = C1t+ C2,

where C1 and C2 are arbitrary (real, if we stick to the real-valued solutions) constants. To determine
these constants I need the initial conditions that can be given, e.g., as x(0) = x0 (initial position) and
ẋ(0) = v0 (initial velocity). This implies that my solution is the function

x(t) = x0 + v0t,

which is actually a mathematical manifestation of the first Newton’s law, that states that “an object
at rest stays at rest and an object in motion stays in motion with the same speed and in the same
direction unless acted upon by an unbalanced force.”

Example 1.2 (Constant force). Now let F = const, then I get (here the minus sign is chosen by
tradition)

ẍ = −g, g = const ∈ R.

I again can simply integrate twice to find, using the same initial conditions as in the previous example,
that

x(t) = x0 + v0t−
gt2

2

is my solution. For example, the faith of a stone thrown vertically down (v0 < 0) or up (v0 > 0) from
some height x0 above the Earth’s ground is governed, approximately, by this solution.

Example 1.3 (Linear force). Now let F ∝ x, where ∝ means “proportional.” For example, Hooke’s
law states that “the force needed to extend or compress a spring by some distance is proportional to
that distance.” Hence I have

mẍ = −kx, k > 0,

where k is called the spring constant. I can rewrite this differential equation as

ẍ+ ω2x = 0, ω2 :=
k

m
.

This ordinary differential equation (ODE from now on) cannot be solved by simple consecutive inte-
grations, but one can check that both t 7→ sinωt and t 7→ cosωt solve this equation, as well as any
their linear combination

x(t) = C1 sinωt+ C2 cosωt.

Actually the last solution, as I will prove in this course, is the general solution to ẍ + ω2x = 0, i.e.,
any solution to this equation can be expressed with this formula for some specific values of C1 and C2.

Can any ODE be solved analytically? Not really.
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Example 1.4 (Three-body problem). According to Newton’s law of gravity, two bodies of masses m1

and m2 respectively are attracted to each other with the force proportional to the product of their
masses and inversely proportional to the square of the distance between them. Hence, if I have three
bodies, and the only forces that are applied to them are gravitational then the second Newton’s law
implies for the first body that

mẍ1 = G
m1m2

|x1 − x2|2
· x2 − x1

|x1 − x2|
+G

m1m3

|x1 − x3|2
· x3 − x1

|x1 − x3|
,

where G is the constant of proportionality in Newton’s law of gravity, |x| :=
√
x21 + x22 + x23 for the

vector2 x⊤ = (x1, x2, x3) ∈ R3, such that |x − y| is the usual Euclidian distance between points
x,y ∈ R3, and

x2 − x1

|x1 − x2|
is the unit vector in the direction from the first body to the second one. I will also need two more
equations for the second and third bodies:

mẍ2 = G
m1m2

|x1 − x2|2
· x1 − x2

|x1 − x2|
+G

m2m3

|x2 − x3|2
· x3 − x2

|x2 − x3|
,

mẍ3 = G
m2m3

|x2 − x3|2
· x2 − x3

|x2 − x3|
+G

m1m3

|x1 − x3|2
· x1 − x3

|x1 − x3|
.

Since I deal with the three dimensional Euclidean space, I have total of 9 equations, and I need 18
initial conditions. It turns out that we are still lacking a full understanding of the behavior of solutions
to this system of ODE. Here is a short digest of the history of this problem.

1687 Isaac Newton in his Principia (Philosophiæ Naturalis Principia Mathematica) was the first one
to formulate the problem of determining the positions of three massive bodies (the Sun, the
Earth, and the Moon).

1747 Jean d’Alembert and Alexis Clairaut published first analytical analysis of the three-body prob-
lem.

1760 Leonhard Euler considered a special case of the general three-body problem, which can be exactly
solved, and found some periodic solutions. Later his problem was also analyzed by many others,
including Joseph-Louis Lagrange.

1887 Ernst Bruns proved that there existed no general analytical solution given by algebraic expres-
sions and integrals.

1890 Henri Poincaré won a contest on the best solution to the three-body problem. He did not solve,
of course, this problem, but formulated the beginning of the theory that eventually led to what
is often called the chaos theory nowadays.

1912 A power series solution was constructed, which means that, in a sense, we do have an analytical
solution to the three-body problem in the form of an infinite series. The usefulness of this
solution, however, is doubtful at best.

2Note the distinction between vector x1 with three coordinate, say (x1
1, x

1
2, x

1
3), and the coordinate x1 of the vector

x⊤ = (x1, x2, x3). Also note that all the vectors, if not stated otherwise, are column-vectors, and hence I use the
transposition notation x⊤ to write this vector as a row-vector.
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1970 A new family of exact periodic solutions was found.

2013 By means of elaborate numerical calculations 18 new families of specific solutions were found3.

To conclude, the history of attempts to analyze the three body problem is definitely not over yet (try
to google the latest achievements).

Exercise 1.1. The exact dynamics of a stone thrown vertically on the Earth, if I disregard the air
resistance, is described by Newton’s gravitational law

mẍ = −G mM

|x+R|2
,

where m is the mass of the stone, M is the mass of the Earth, and R is the radius of the Earth. If I
assume that x+R ≈ R, then I get an approximate equation

ÿ = −g, g := G
M

R2
.

Assuming that x(0) = y(0) = h > 0, x′(0) = y′(0) = 0, then for which equation the time to reach the
surface of the Earth is smaller? Please note that you do not need to actually solve the equations.

1.2 Basic definitions and geometric interpretation of solutions

1.2.1 Definitions

Definition 1.5. An ordinary differential equation is an equation of the form

F (t, x, x′, . . . , x(k)) = 0, (1.2)

for a given F : U ⊆ Rk+2 −→ R. A solution to (1.2) on the interval I = (a, b) is a function4

t 7→ ϕ(t) ∈ C(k)(I;R) such that (1.2) turns into the identity

F
(
t, ϕ(t), ϕ′(t), . . . , ϕ(k)(t)

)
= 0 for all t ∈ I.

The order of (1.2) is the order of the highest derivative in it.

In this course I will always assume that (1.2) can be rewritten as

x(k) = f(t, x, x′, . . . , x(k−1)), (1.3)

which frequently can be done, at least locally, thanks to the implicit function theorem.
Any equation of the form (1.3) can be written as an equivalent system of k first order ODE. To

wit, let
y1 = x, y2 = x′, . . . , yk = x(k−1),

3See Milovan Šuvakov, V. Dmitrašinović, Three Classes of Newtonian Three-Body Planar Periodic Orbits,
http://arxiv.org/abs/1303.0181.

4I use the standard notation C(p)(X;Y ) for the set of p times continuously differentiable functions mapping X into Y ,
and also several abbreviations: C(X;Y ) := C(0)(X;Y ) for the set of continuous functions, C∞(X;Y ) :=

∩∞
p=1 C

(p)(X;Y ),

C(p)(X) := C(p)(X;R), C(p)(a, b) := C(p)((a, b);R), and C(p)[a, b] := C(p)([a, b];R).
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then I have

ẏ1 = y2,

ẏ2 = y3,

. . .

ẏk = f(t, y1, . . . , yk).

Therefore, it is convenient (for theoretical, as well as for numerical purposes) to concentrate attention
on the systems of ODE of the form

ẋ = f(t,x), x(t) ∈ X ⊆ Rk, f : J ×X −→ Rk, (1.4)

where J ⊆ R in an interval of the real line, on which the right hand side of (1.4) is defined with
respect to t. If the right hand side of (1.4) does not depend on t explicitly, then the system is called
autonomous. Any non-autonomous system can be written as an autonomous one by adding one more
equation and one more variable. For example, a scalar non-autonomous equation ẋ = f(t, x) can be
turned into a system of two first order autonomous equations

ẋ1 = f(x2, x1),

ẋ2 = 1.

Note that this procedure can yield nonlinear problems although the original one was linear5.

Example 1.6. Let6

ẋ = f(t), f ∈ C(J).

By the fundamental theorem of calculus, I have

x(t) = x0 +

∫ t

t0

f(τ) dτ,

if the solution satisfies the initial condition x(t0) = x0. Sometimes it is more convenient to use the
indefinite integral, and the general solution will be

x(t) =

∫
f(t) dt+ C,

where C is an arbitrary constant.

Example 1.7. Consider the following ODE

ẋ = ax, a ∈ R.

I claim that any solution to this equation has the form t 7→ C exp(at). Here exp: t 7→ et.

Lemma 1.8. Any solution to ẋ = ax is given by t 7→ Ceat.

5The exact definition of what is called linear will be given later in the course.
6When writing ODE, I will follow the historical trend and abuse the notation by typing f(t) to mean function

f : J −→ R. The correct way to write this would be f or t 7→ f(t), but I will stick to the tradition.

9



Proof. Let u be a solution to ẋ = ax. Consider

(u(t)e−at)′ = u′(t)e−at − au(t)e−at = au(t)e−at − au(t)e−at = 0,

hence
u(t)e−at = C ⇐⇒ u(t) = Ceat.

�

In case I have the initial condition x(t0) = x0, the solution is t 7→ x0e
a(t−t0).

Exercise 1.2. Let
x(k) = f(x, x′, . . . , x(k−1))

be an autonomous equation. Show that if t 7→ ϕ(t) is a solution, then so is t 7→ ϕ(t− t0), where t0 is
an arbitrary constant.

Exercise 1.2 shows that for the autonomous equations (and hence for the autonomous systems) I
can always take the initial conditions at t = 0, other solutions can be obtained by translations.

Exercise 1.3. What is the general solution to the ODE

ẋ = 0?

Is is necessarily a constant function? What else one needs to require for the solution to be a constant
function in addition to the ODE?

Exercise 1.4. Does there exist a solution to the problem

ẋ =

{
1, x < 0,

−1, x ≥ 0,

with the initial condition x(0) = 0? Justify your answer. (If this problem is a little confusing, reading
the next section may help.)

Exercise 1.5. In all the examples I gave so far the general solution to an ODE depended on arbitrary
constants whose number coincided with the order of the equation. This is true for most examples but
not for all. Can you provide an example of an ODE that has no solution at all?

1.2.2 Geometric interpretation of the first order scalar ODE

It is convenient to have at hands a geometric interpretation of the solutions to the first order scalar
ODE of the form

ẋ = f(t, x), x(t) ∈ X ⊆ R, f : J ×X −→ R. (1.5)

Consider in J ×X the direction field defined by (t, x) 7→ f(t, x); this literally means that at each
point (t, x) ∈ J ×X the slope (direction) is given by f(t, x). A curve t 7→ ϕ(t) is said to belong to the
given direction field, if its slope at the point (t, ϕ(t)) is given exactly by f(t, ϕ(t)). A curve belonging
to a direction field is called an integral curve (see Fig. 1.1).

Lemma 1.9. Consider a differentiable function t 7→ ϕ(t) defined on some interval I ⊆ J . Its graph is
an integral curve of the direction field defined by (t, x) 7→ f(t, x) in J ×X if and only if ϕ solves (1.5).
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t

x

Figure 1.1: The direction field defined by f(t, x) = t2 − x2 and three integral curves.

Proof. Let t 7→ ϕ(t) be an integral curve. Since the slope at the point t is given by ϕ′(t) and since it
is an integral curve, the same slope is given by f(t, ϕ(t)), which means that ϕ′(t) = f(t, ϕ(t)) for all
t ∈ I, which implies that t 7→ ϕ(t) is a solution to (1.5).

In the opposite direction. Let t 7→ ϕ(t) solve (1.5) on t ∈ I, therefore ϕ′(t) = f(t, ϕ(t)), i.e., the
slope at the point t ∈ I is equal to f(t, ϕ(t)), which yields that the graph of t 7→ ϕ(t) belongs to the
direction field defined by f(t, x) in J ×X, i.e., its graph is an integral curve. �

Using Lemma 1.9 I can formulate the geometric meaning of the first order ODE: To geometrically
solve (1.5) amounts to finding integral curves belonging to the direction field defined by f . There are
infinitely many such curves. To geometrically solve the initial value problem (IVP from now on) with
x(t0) = x0 amounts to finding an integral curve belonging to the direction field and passing through
the point (t0, x0). In the following I will use the terms “solutions to ODE” and “integral curves”
interchangeably.

Exercise 1.6. Sketch several integral curves of the differential equations

(a) ẋ =
tx

|tx|
, (b) ẋ =

|t+ x|
t+ x

. (c) ẋ = − t+ |t|
x+ |x|

, (d) ẋ =

{
0, t ̸= x,

1, t = x.

Exercise 1.7. Sketch several integral curves of the differential equation

ẋ =
x− t

x+ t
.

Can two integral curves intersect? Obviously, no (for reasonable, say, continuous, f), because this
would mean that at the same point I have two different slopes. However, two integral curves can be
tangent to each other at some point (t0, x0). In general, from applied point of view, this situation

11



t

x

θ

ϕ

t
x

Figure 1.2: The direction field invariant with respect to translations along the t-axis. Left: Relation
between θ and φ for an autonomous direction field. Right: An example of the direction field defined
by (t, x) 7→ x2 with three integral curves.

is not pleasant, since it means that more than one solution is defined by the initial conditions and
the mathematical model. Therefore, it is important to identify the conditions when only one integral
curve passes through each point.

Note that the direction field defined by f in Example 1.6 does not depend on x and therefore
invariant with respect to translations along the x-axis. This fact is exactly what has allowed me to
integrate my differential equation in Example 1.6: at each point t I have the slope f(t) and my task
is to find a function with this slope at t.

What if the direction field is invariant with respect to translations along the t-axis? This means
that this direction field does not depend on t explicitly (it is autonomous). Now, since the slope at
the point (t, x) is equal to the tangent of the angle θ between the t-axis and the tangent line at this
point (tan θ = f(x)), to find the tangent of the angle between the same tangent line and the x-axis
amounts to finding tanφ = tan(π/2− θ) (see Fig. 1.2, left panel). I have

tan(π/2− θ) =
1

cot(π/2− θ)
=

1

tan θ
=

1

f(x)
.

Therefore, to integrate an autonomous direction field (i.e., invariant with respect to translations along
the t-axis), I need to evaluate one integral (compare it with Example 1.6)

t = t0 +

∫ x

x0

ds

f(s)
, (1.6)

which gives the solution to ẋ = f(x) in an implicit form.
The reasonings above can be summarized as
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Lemma 1.10. Let ẋ = f(x), x(t) ∈ X ⊆ R, f ∈ C(X), f(x) ̸= 0 for x ∈ X. Then the solution to
ẋ = f(x), x(t0) = x0 exists and unique for any x0 ∈ X and given by (1.6).

Remark 1.11. The usual way to derive (1.6) in introductory ODE courses is to write

dx

dt
= f(x),

manipulate
dx

f(x)
= dt,

and integrate ∫ x

x0

ds

f(s)
=

∫ t

t0

dτ,

to recover (1.6). This procedure treating the derivative as a fraction does not lead to any errors,
but may be confusing for those who try to understand the logic behind every step in the reasonings,
because definitely the usual derivative is not a fraction.

A better, and completely rigorous, approach to integrating the equation ẋ = f(x) mechanically is
to rearrange it as ẋ

f(x) = 1, assuming f(x) ̸= 0, and to integrate both sides of this last equality with
respect to variable t: ∫ t

t0

ẋ(τ)

f(x(τ))
dτ =

∫ t

t0

dτ,

and now make a substitution s = x(τ), which would end up in (1.6)∫ x

x0

ds

f(s)
= t− t0.

Remark 1.12. Treating expressions like dx
dt as fractions quite often yields correct results. Think, for

instance, about the chain rule for the composite function t 7→ f(u(t)):

df

dt
=

df

du

du

dt
.

It should be stressed out, however, that unless you clearly have an understanding what dx and dt
mean, and what it means to divide one by the other one, you should avoid “intuitively plausible”
arithmetic with these quantities. Here is, for instance, one example when simple canceling of identical
terms leads to a senseless result: Consider an implicitly defined function F (x, y) = 0. Then, as it is
shown in many calculus books, assuming that ∂F

∂y ̸= 0 at a given point,

dy

dx
= −

∂F
∂x
∂F
∂y

.

If you still insist on treating dx and dt separately, then probably the most frequent interpretation
for them that allows such treatment is to assume that dx and dt are differential forms, but this would
take us too far away from the main line of our course.

Using similar to the above reasoning I find that
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Lemma 1.13. Consider the ODE

ẋ = f1(t)f2(x), t ∈ J, x(t) ∈ X, f1 ∈ C(J), f2 ∈ C(X). (1.7)

Assume that f2(x) ̸= 0 for any x ∈ X. Then for any point (t0, x0) ∈ J × X there exists a unique
integral curve passing through this point. This curve can be found with two integrals∫ x

x0

ds

f2(s)
=

∫ t

t0

f1(τ) dτ.

Exercise 1.8. Prove Lemma 1.13.

Exercise 1.9. Show that all the solutions to ẋ = f(x) are monotonous functions.

What if there is an x̂ ∈ X such that f(x̂) = 0 in ẋ = f(x) or f2(x̂) = 0 in (1.7)? Note that in this
case the function t 7→ x̂ is a solution (it satisfies the equation). Then I am tempted to generalize, e.g.,
Lemma 1.10 in the following (incorrect!) way

Lemma 1.14 (This statement is incorrect!). Let ẋ = f(x), x(t) ∈ X ⊆ R, f ∈ C(X). Then for any
point (t0, x0) ∈ R × X the solution to ẋ = f(x) passing through this point exists and unique. It is
given by (1.6) if f(x0) ̸= 0 or by t 7→ x0 if f(x0) = 0.

Example 1.15 (Non-uniqueness of solutions to an IVP). Consider the following IVP

ẋ = x1/3, x(0) = 0.

First I notice that t 7→ 0 is a solution. However, using (1.6) I find that

t 7→
(
2t

3

)3/2

is also a solution passing through the point (0, 0)! Moreover, the function defined by

t 7→

 0, t ≤ a,

2(t− a)3/2

3
, t > a,

is also a solution passing through (0, 0) for any constant a > 0 (check this statement carefully).

By actually carefully analyzing the reason why the solution in the last example is not unique (do
the integration step by step!), I conclude that a correct statement should be

Lemma 1.16. Let ẋ = f(x), x(t) ∈ X ⊆ R, f ∈ C(X). Then for any point (t0, x0) ∈ R × X the
solution, given by (1.6), passing through this point, exists and unique if f(x0) ̸= 0. If f(x0) = 0 and
the improper integral ∫ x

x0

ds

f(s)

diverges, then the unique solution for x(0) = x0 is given by t 7→ x0.

Exercise 1.10. Prove Lemma 1.16.
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Note that a sufficient condition for this integral to diverge is to have a continuous derivative at
x = x0. This can be stated as

Lemma 1.17. Consider (1.7) and assume that f1 ∈ C(J) and f2 ∈ C(1)(X). Then for any point
(t0, x0) ∈ J ×X there exists a unique integral curve passing through this point.

It turns out that a very similar statement can be formulated in much more general situations (see
the next chapter).

Before finishing this section, I would like to remark that I never discussed the interval of existence
of my solutions. This is an important point, as the following example shows.

Example 1.18. Consider
ẋ = x2.

This equation satisfies the conditions of the last lemma everywhere in R with respect to both t and
x, and therefore for any initial conditions (t0, x0) there must be a unique integral curve through this
point. It is t 7→ 0 if x0 = 0 and

t 7→ 1

C − t
,

for an arbitrary constant C. If t → C then my solution approaches infinity (it blows up). Therefore,
the solution is defined on some smaller interval (−∞, C) ⊂ R (se Fig. 1.2, the right panel, for the
direction field defined by (t, x) 7→ x2).

1.3 Analytical methods to solve ODE

1.3.1 Separable equations

Definition 1.19. A first order ordinary differential equation of the form

ẋ = f1(t)f2(x), t ∈ J ⊆ R, x(t) ∈ X ⊆ R

is called separable.

From the previous section the solution to the separable equation in given by∫
dx

f2(x)
=

∫
f1(t) dt,

if f2(x) ̸= 0. If x̂ is such that f2(x̂) = 0 then there is also solution t 7→ x̂. The existence and uniqueness
of solutions is determined by the properties of f1 and f2 (Lemma 1.16).

Exercise 1.11. Solve the following differential equations:

(a) ẋ = x3, (b) ẋ = x(1− x).

Exercise 1.12. Investigate uniqueness of the solutions to the differential equation

ẋ =

{
−t
√
|x|, x ≥ 0,

t
√

|x|, x ≤ 0.
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Show that the initial value problem x(0) = x0 has a unique global solution (the solution is called global
if it is defined for all t ∈ R) for any x0 ∈ R. However, show that the global solutions still intersect!
(Hint: Note that if t 7→ x(t) is a solution so are t 7→ −x(t) and t 7→ x(−t), so it suffices to consider
x0 ≥ 0 and t ≥ 0).

Exercise 1.13. Consider the free fall with air resistance modeled by

ẍ = ηẋ2 − g, η > 0.

Solve this equation. (Hint: introduce the velocity v = ẋ as a new independent variable.) Is there a
limit to the speed the object can attain? If yes, find it.

Exercise 1.14. (Before solving this problem, you should solve the previous one.) A parachutist jumps
from 1.5 km and opens his parachute at 0.5 km. How long was he falling before opening his parachute?
Take into account that the maximal speed of a falling human body in the air of the normal density is
50 m/sec (meters per second).

Exercise 1.15. A body cooled down from 100◦ to 60◦ for 10 minutes. The temperature of the
surrounding air is constant and equal to 20◦. How long will it take for the body to cool down to 25◦?
(Assume that the rate of cooling is proportional to the difference of the body temperature and the
temperature of the environment, which is known as Newton’s cooling law.)

Exercise 1.16. Find the equations of the curves for which the area of the triangle generated by the
t-axis, the tangent line, and the t-coordinate of the tangent line, is constant and equal to a2. (Consider
two cases x′ > 0 and x′ < 0.)

Exercise 1.17. It took 30 days for some radioactive substance to reduce 50% from the initial condition.
How long will it take for this radioactive substance to reduce to 1% of the initial condition? (Use the
law of the radioactive decay that says that the rate of decay is proportional to the available amount.)

Exercise 1.18. Show that every integral curve of the equation

ẋ =
3

√
x2 + 1

t4 + 1

has two horizontal asymptotes.

Exercise 1.19. For which a each solution to

ẋ = |x|a,

is defined globally (i.e., for all t ∈ R)?

Exercise 1.20. Solve the differential equation describing the shape y of a hanging chain suspended
at two points (this curve is called a catenary):

y′′ = a
√

1 + (y′)2 , a > 0.

For simplicity assume that the coordinate system is chosen such that y′(0) = 0, i.e., the slope of the
catenary at the point x = 0 is zero.
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1.3.2 Linear equations

Definition 1.20. A first order ordinary differential equation of the form

ẋ+ p(t)x = q(t), p, q ∈ C(J)

is called linear. If q ≡ 0 then it is called linear homogeneous, whereas in the opposite case it is called
nonhomogeneous.

Remark 1.21. The notation ẋ + p(t)x = q(t) is slightly abusive since both p(t) and q(t) are not
functions but the values of the functions p, q at the point t. I will use this kind of notation in the
following.

Lemma 1.22. Assume that p, q ∈ C(J) in the linear ODE. Then there exists a unique solution to the
IVP with x(t0) = x0, t0 ∈ J defined on all J .

I will give a constructive proof of this lemma by actually presenting the solution by the method
called the variation of the parameter or variation of the constant.

Proof. First, consider the homogeneous linear equation

ẋ = −p(t)x,

which is separable and can be integrated to get

x(t) = x0e
−

∫ t
t0
p(τ) dτ

.

This is a unique solution because the integral
∫ x
0

ds
s diverges.

Now let us look for the solution to the full non-homogeneous linear ODE in the form

x(t) = C(t)e
−

∫ t
t0
p(τ) dτ

, (1.8)

where t 7→ C(t) is some unknown function of t (compare with the above solution to the homogeneous
equation). It will be a solution if and only if

C ′(t) = q(t)e
∫ t
t0
p(τ) dτ

.

Indeed, assume (1.8) is a solution. After plugging this expression into the equation I get

C ′(t)e
−

∫ t
t0
p(τ) dτ − p(t)C(t)e

−
∫ t
t0
p(τ) dτ

+ p(t)C(t)e
−

∫ t
t0
p(τ) dτ

= q(t) ⇐⇒ C ′(t) = q(t)e
∫ t
t0
p(τ) dτ

.

In the opposite direction, assume that C ′(t) = q(t)e
∫ t
t0
p(τ) dτ

, then (1.8) is a solution by direct substi-
tution.

Clearly the condition x(t0) = x0 and assumption (1.8) are equivalent to C(t0) = x0. Therefore

C(t) = x0 +

∫ t

t0

q(τ)e
∫ τ
t0
p(ξ) dξ

dτ.

Putting everything together I conclude that

x(t) = x0e
−

∫ t
t0
p(τ) dτ

+ e
−

∫ t
t0
p(τ) dτ

∫ t

t0

q(τ)e
∫ τ
t0
p(ξ) dξ

dτ,

is the unique solution to my IVP defined on the whole interval J . �
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Remark 1.23. Often the solution to the linear ODE that I found above is written with indefinite
integrals as

x(t) = Ce−
∫
p(t) dt + e−

∫
p(t) dt

∫
q(t)e

∫
p(t) dt dt.

Example 1.24. Solve
(t+ x2)ẋ = x.

At a first glance this problem is not linear. However, I can again play with the derivative as a fraction:

(t+ x2)
dx

dt
= x⇐⇒ dt

dx
− t

x
= x,

i.e., this equation is of the form
ṫ+ p(x)t = q(x).

(A rigorous justification of this manipulation can be made with the help of the inverse function
theorem.) Now

dt

t
=

dx

x
⇐⇒ log |t| = log |Cx| ⇐⇒ t = Cx,

and I point that the arbitrary constant C can be different in different parts of the equality (as it
happened in the previous line). Now I look for the solution in the form t = C(x)x and get

C ′(x) = 1 ⇐⇒ C(x) = x+A,

which implies that t = x3+Ax is the general solution to the original equation, where A is an arbitrary
constant.

Exercise 1.21. Consider the IVP

ẋ+
2

3
x = 1− t

2
, x(0) = x0.

Find the value(s) of x0 such that the solutions touches, but does not cross the t-axis.

Exercise 1.22. Find a bounded solution to

ẋ− x = cos t− sin t.

Exercise 1.23. Consider the family of the integral curves of a linear equation ẋ+ p(t)x = q(t). Show
that the tangent lines to the integral curves at the points with the same t-coordinate cross at the same
point.

Exercise 1.24. Show that the equation

ẋ+ x = f(t),

where f is a continuous and bounded function (i.e., |f(t)| ≤ M for any t ∈ R for some constant M),
has only one bounded solution for any t ∈ R. Find this solution. Show that if f is periodic then this
solution is also periodic. (Hint: Express the solution through an integral with an infinite limit.)
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Exercise 1.25. Consider the equation

ẋ+ a(t)x = f(t),

where a(t) ≥ C > 0 for all t, f(t) → 0 as t → ∞, and functions a, f are continuous for any t > t0.
Show that any solution of this equation approaches 0 as t→ ∞. (Hint: Use the explicit formula.)

Exercise 1.26. Let x1 and x2 be two particular (different) solutions to the linear equation x′+p(t)x =
q(t). Express the general solution to this equation through x1 and x2.

Exercise 1.27. Find a periodic solution to the differential equation

y′ = 2y cos2 t− sin t.

(Hint: It may be useful, but this is definitely not the only way to solve this problem, to show first
that the equation x′ = f(t, x) with T -periodic f (i.e., f(t, x) = f(t+ T, x) for any t) has a T -periodic
solution ϕ if and only if ϕ(0) = ϕ(T ) (this actually means that the problem to find a periodic solution
boils down to a boundary value problem). Another approach to this problem is to express the general
solution through an integral with the infinite (upper) limit.)

Exercise 1.28. Show that only one solution to

tẋ− (2t2 + 1)x = t2

tends to a finite limit for t→ ∞ and find this limit.

Exercise 1.29. Consider the linear homogeneous equation

ẋ = a(t)x.

Find the conditions on function a for the solutions to this equation to be periodic.

Exercise 1.30. Consider the linear non-homogeneous equation

ẋ = a(t)x+ b(t),

where both a, b are T -periodic functions. Assume that
∫ T
0 a(τ) dτ ̸= 0. Show that in this case there

exists only one T -periodic solution to the original equation.

1.3.3 Exact equations

Going back to the geometric interpretation of the first order ODE, I remark that if I consider

ẋ = f(t, x),

then I actually ignore the directions parallel to the x-axis (the slope is infinite). If, as in Example
1.24, I take the point of view that

ṫ = g(t, x),

then I ignore the direction parallel to the t-axis.
There is a general way to take care of both of these directions by writing the first order ODE in

the symmetric form
M(t, x) dt+N(t, x) dx = 0,

where M and N are some given functions. Now the direction is not defined only at those points (t, x)
at which both M and N vanish.
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Definition 1.25. A first order ODE of the form

M(t, x) dt+N(t, x) dx = 0

is called exact if there is a function F : U ⊆ R2 −→ R such that

dF =M(t, x) dt+N(t, x) dx.

Here dF is the full differential of the function of two variables, which is defined to be

dF =
∂F

∂t
dt+

∂F

∂x
dx.

From the definition I immediately have that the general solution to the exact equation is given by

F (t, x) = const.

From analysis I know that if U is “nice” (an open simply connected subset of the plane, i.e., without
“holes”) then a necessary and sufficient condition for the equation to be exact is

∂M

∂x
=
∂N

∂t

for all points (t, x) ∈ U . In this case function F can be found by integration.

Exercise 1.31. Check that the following differential equation exact and find its solution:

3x2(1 + ln y) dx =

(
2y − x3

y

)
dy.

Remark 1.26. In some sense exactness is what allows one integrating an ODE in a closed form.
Clearly, a separable equation ẋ = f1(t)f2(x) written as

f1(t) dt−
1

f2(x)
dx = 0

is exact.
Linear equation ẋ + p(t)x = q(t) is not exact, but it becomes exact after multiplication by an

integrating factor µ(t) = e
∫ t
t0
p(τ) dτ

. Indeed, the ODE

µ(t) dx+ (µ(t)p(t)x− q(t)µ(t)) dt

is exact (check it).

1.3.4 Substitutions

Most of the ODE are neither separable, nor linear, nor exact. However it is often possible to come up
with a substitution to turn the given first order ODE into one of these three types. Here are just two
examples.
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Definition 1.27. A first order ODE of the form

ẋ = f
(x
t

)
is called homogeneous.

The substitution x(t) = u(t)t turns it into a separable equation for the new unknown function u.

Definition 1.28. A first order ODE of the form

ẋ+ p(t)x = q(t)xn, n ∈ R\{0, 1}

is called Bernoulli’s equation.

The substitution u(t) = x1−n(t) turns it into a linear equation for the new unknown function u.
Modern computer algebra systems, like Maple R⃝ or Mathematica R⃝, can solve a great deal of dif-

ferent ODE in explicit form.

Exercise 1.32. Solve the following homogeneous differential equation

ẋ =
t+ x

t− x
.

Sketch the integral curves. (Hint: For the last point it is better to switch to polar coordinates
t = ρ cos θ, x = ρ sin θ.)

Exercise 1.33. Recall that function ψ is called homogeneous of degree m ∈ R if for any τ ∈ (a, b)
ψ(τt, τx) = τmψ(t, x). Prove that the equation

M(t, x) dt+N(t, x) dx = 0

is homogeneous if and only if M and N are homogeneous functions of the same degree.

Exercise 1.34. The solutions to ẋ = f(t) are invariant with respect to translations along x-axis,
the solutions to ẋ = f(x) are invariant with respect to translations along t-axis. Which geometric
transformation leaves the integral curves of the homogeneous equation invariant?

1.3.5 Liouville’s theorem

Can I always find an analytical solution (a formula) to a first order ODE? The answer is negative, as it
was proved by Joseph Liouville in 18397. To be precise, he showed that there are some specific second
order linear differential equation with non-constant coefficients that cannot be solved in elementary
functions. To wit, the following theorem8 holds

Theorem 1.29 (Liouville). The solutions of the equation y′′ + xy = 0 cannot be obtained from the
field of rational functions of x by any sequence of finite algebraic extensions, adjunctions of integrals,
and adjunctions of exponentials of integrals.

7Mémoire sur l’intégration d’une classe d’équations différentielles du second ordre en quantités finies explicites, Journal
de Mathématiques pures et appliquées, 1839.

8I am borrowing this theorem from Irving Kaplansky, An introduction to differential algebra, 1957, where all the
glorious details can be found.
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It turns out that, after a specific substitution, Riccati’s equation

ẋ = q0(t) + q1(t)x+ q2(t)x
2

can be rewritten as a second order linear ODE. First it can be rewritten, using the new variable
v = q2x, as

v̇ = v2 + p1(t)v + p2(t),

and after this, using the substitution v = −u′/u, as

u′′ − p1(t)u
′ + p2(t)u = 0,

which is a second order linear ODE. If I take ẋ = x2 + t then the corresponding second order linear
equation is

u′′ + tu = 0,

for which Liouville’s theorem holds.

Exercise 1.35. Show that if one knows a particular solution xp to Riccati’s equation then the general
solution can be found by quadratures (integration).

1.4 Appendix: Additional exercises

In this appendix to the first chapter I collect a number of exercises in elementary ODE theory.

Exercise 1.36. Sketch the integral curves of the equation

ẋ =
t2 + x2

2
− 1.

Exercise 1.37. Consider the equation

ẋ =
x

t
+ φ

(
t

x

)
.

Find such φ that the general solution to this equation is given by

x(t) =
t

log |Ct|
.

Exercise 1.38. Sketch the graphs of solutions to

sin ẋ = 0.

Exercise 1.39. Prove that the differential equation for the algebraic curves of the second order has
the form ((

x′′
)−2/3

)′′′
= 0.

Exercise 1.40. Prove that the equation
ẋ = 2

3
√
tx

has more than one solutions passing through the origin.
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Exercise 1.41. Prove that all the solutions to

ẋ =
1

1 + t2 + x2

are bounded for all t ∈ R.

Exercise 1.42. Solve
x′′ − tx′ − x = 0.

Exercise 1.43. Prove that the equation
ẋ = x2 + t

with the initial condition x(0) = 0 has no solution on the interval (0, 3).

Exercise 1.44. Let x ∈ C(2)(a, b) ∩ C[a, b] satisfy the equation

x′′ = etx

and the boundary conditions x(a) = x(b) = 0. Find x. How many solutions exist?
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